

Evaluation of Operational and Experimental CMAQ Ozone and PM http://airquality.weather.gov

Jeff McQueen, Jianping Huang, Ho-Chun Huang, Perry Shafran, Geoff DiMego – NCEP/EMC Pius Lee, Li Pan, Daniel Tong –NOAA/ARL Ivanka Stajner, Sikchya Upadhayay – NWS/STI

September 14, 2016

CMAQ weaknesses Identified

- Overprediction of ozone in Eastern U.S. in Summer
 - Especially along coastal cities (NYC, DC, Cleveland)
 - \rightarrow Update National Emission Inventory point sources to 2011 (project to 2016)
 - ightarrow Reduce NOx emissions based on OMI satellite trends
 - \rightarrow Update CMAQ chemistry/biogenic emissions to EPA V5.0
- Underprediction of particulate matter (PM) in Summer and near wild-fires
 - → Update 9 year old USFS BlueSky smoke emission system
 - ightarrow Introduce 24 h pre-analysis cycle to correct fire time mismatch with CMAQ initial time
- Underprediction of Ozone and PM when strong fires are present outside CMAQ domain

ightarrow Test NGAC full aerosol predictions for CMAQ lateral boundaries

Overprediction of PM during winter-time stagnation episodes (cold, stable)
→ update emissions/chemistry as in bullet 1

New Updated BlueSky:

- The Fuel Characteristic Classification System version 2 (FCCS2) which includes a more detailed description of the fuel loadings with additional plant type categories.
- Explicit fuel load map for Alaska
- improved fuel consumption model and fire emission production system (FEPS).

Courtesy Ho-Chun Huang, EMC

May 2016 Ft McMurry (Canda) Fire - D

HYSPLIT F08H6 t06z pbl smoke 20160508/1800V012 conc ug/m

July 2016 Northern Wyoming Fires

SPLIT DEV t06z pbl smoke 20160728/1800V012 conc ug/m3

HYSPLIT/Smoke prediction

eIDEA Smoke Mask

July 2016 California Big Surf Fires

Analog Ensemble for PM_{2.5} Bias Correction

• Analog metric is determined by (Monache et al. 2011)

$$\|F_{t}, A_{t'}\| = \sum_{i=1}^{N_{v}} \frac{w_{i}}{\sigma_{f_{i}}} \sqrt{\sum_{j=-\tilde{t}}^{\tilde{t}} (F_{i,t+j} - A_{i,t'+j})^{2}},$$

where F_t is current NWP forecast valid at future time t, $A_{t'}$ is analog at past time t', N_v is the number of variables, \tilde{t} is half the number of additional computation time, w_i weight, σ_{f_i} standard deviation

Implementation in NAQFC

- Variables for Analog search: PM_{2.5}, T₂, WS/WD
- Ensemble members: 5
- Training period: one year

(Source: Djalalova et al., 2015)

Courtesy Jianping Huang, EMC 6

NAM Forecast System - Version 4 (Q1FY17)

• Resolution Changes

- \sim <u>CONUS (4 km) and Alaska (6 km) nests</u> \rightarrow 3 km
- Sync AK and CONUS On-Demand Fire Weather nests \rightarrow 1.5 km
- Select Model Changes
 - <u>Updated microphysics</u> → Improved stratiform precip., better anvil reflectivity, lower peak dBZs, smaller areas of light/noisy reflectivity (rain treated as drizzle), improved nest QPF bias in warm season, reduce warm season 2-m T warm bias
 - More frequent calls to physics → Physics/dynamics more in sync (e.g. improved upper air, improved nest QPF)
 - Improve effect of frozen soil on transpiration and soil evaporation \rightarrow Improve cold season 2-m T/Td biases
 - Adjustment to convection in $12 \text{ km NAM} \rightarrow \text{Improve QPF}$
 - Modify latent heat flux treatment \rightarrow Improve visibility along CA coast
- Data Assimilation:
 - DA cycles for 3 km CONUS and AK nests \rightarrow Much less 'spin-up' time
 - <u>Use of Lightning and Radar Refectivity-derived temperature tendencies</u> <u>in initialization</u>
 - Improved short-term forecasts of storms at 3 km
 - Improved 00-12 hr QPF
 - $\circ \quad \underline{\text{New satellite radiances, satellite winds}} \rightarrow \underline{\text{Improved Inital Conditions}}$

DA: Data Assimilation Cycle

Courtesy Eric Rogers, EMC

Mean 2-M Temp vs. sfc obs (122 cycle) over the Western US for ops NAM and pll NAM forecasts from 201607190000 to 201608291200 Mean 2-M Temp vs. sfc obs (12Z cycle) over the Eastern US for ops NAM and pll NAM forecasts from 201607190000 to 201608291200

PROD DAY1 02MX08 20160708 122 CYC-

DPARA DAY1 02HX08 20160708 122 CYC

<u>NAM-X - CMAQ</u> V4.7 <u>NAM - CMAO V4.7</u> 50.0 54.5 65. 0 70.5 86.0 106.0 40.0

BIAS

NAM-CMAQ V4.7.5 vs V5.02

Ozone West vs East August 2015

Improved over the East Underprediction over the West esp during active fires

NAM-CMAQ V4.7.5 vs V5.02

Ozone Underprediction near fires (August 2015)

Importance of wild fire gas emissions on ozone: 8/22/15

AEATH.

Air Quality Impacts in Washington from 2015 Wildfires

From: Narrative Timeline of the Pacific Northwest 2015 Fire Season. USDA Forest Service. http://www.wfmrda.nwcg.gov/docs/_Reference_Materials/2015_Timeline_PNW_Season_FINAL.pdf

CMAQ V4.7 PM Performance Aug 2015 Western U.S. Wild Fires

- Impact of fire initialization time (solid vs dashed red line)
- Impact of different BlueSky systems (dashed blue vs dashed red line)

Western Fires August 21, 2015 1hr PM2.5 Max

Operational V4.7

PARA1 DAY1 PHMX01 20150821 06Z CYC

.5 100.0 150.5 250.5

BlueSky v3.5.1 & Current day locations

ARA NEWPOST2 DAY1 PMMX01 20150821 12Z C

Operational runs: Most sites impacted by fire smoke are severely under-predicted. Experimental tests: Updated BlueSky and use of current day fire info

V4.7 vs V5.02 1 hr max PM Winter Case

PROD AGH DAYL PHHXOL 20160221 122 CYC" :A2 CHAQ. V5. 0. 2 DAYL PHHXOL 20160221 122

6.0 12.0 25.0 35.5 55.5 100.0 150.5 250.5

Large improvements to correct for overprediction during Eastern U.S. stagnation episodes

2/17/16

2/21/16

July 2016 NRT Prediction 1 h avg Ozone

• Continue to see improvement in ozone over-prediction over the East

July-August 2016 NRT Prediction 8 h avg Ozone Skill Score (CSI)

SEATH,

Larger improvement for Day 1 CSI

Summer 2016 NRT prediction

July 08, 2016 12Z run Day 1 8h Max ozone forecast

V5.02: Large improvement for nonevent

PROD DAY1 02HX08 20160708 122 CYC-

A2 CHA9. 15. 0. 2 DAY1 0ZHX08 20160708 122

V5.02: - Improved upon strong overprediction for Eastern Shore, NJ and NY - underpredict S. NJ, DE code

orange

PROD DAYL 02HX08 20160708 12Z CYC" :A2 CMA0. 95. 0. 2 DAY1 02HX08 20160708 12Z

Summer 2016 NRT prediction

July 21-22, 2016 12Z run Day 1 8h Max ozone forecast

PARA2 CHA9. V5. 0. 2 DAY1 02HX08 20160721 122 CYC

PROD DAY1 02MX08 20160721 122 CYC*

PARA2 CHA9. V5. 0. 2 DAY1 0ZHX08 20160722 12Z CYC

PROD DAY1 0ZMX08 20160722 122 CYC*

V5.02: - Can miss some exceedences (7/21/16) but improved Overpredictions on 7/22/16 in NE PA, NY, NY

106.0 86.0 70.5 65.0 54.5 50.0 45.0

18

Summer 2016 NRT Prediction

July 12, 2016 12Z run Day 2 8h Max ozone forecast

PROD DAY2 0ZHX08 20160712 12Z CYC" :A2 CHA9. V5. 0. 2 DAY2 0ZHX08 20160712 12Z

V5.02 more ozone formation in NOx saturated California

Summer 2016 NRT Prediction July 6, 2016 Dust event

• V5.0.2 misses Saharan Dust Intrusion (red line)

South West Coast

- Overprediction of wild fire smoke events in AM
 - No diurnal emissions profile used

22

PM California Fires

July 24, 2016 12Z run Day 1 1hr Max PM2.5 forecast

250.5 150.5 105.0 55.5 35.5 25.0 12.0 6.0

Smoke Emissions

- Location
- Magnitude
- Ejection height
- Diurnal evolution

NCEP

August 17, 2016 Big Sur and Blue Cut Fires

USFS NAM-Nest HYSPLIT smoke

25

Summary

- Ozone
 - Improvement correcting over-prediction esp along coasts
 - Long Island Sound
 - Lake Erie/Michigan and Ohio Coastline
 - Much improved for Southwest and marginal or non-events
- *PM*
 - Large positive impact near forest fires :
 - updated BlueSky and24 h pre analysis run
 - Underprediction when external sources (Saharan dust, Canadian fires) are impacting CONUS
- FY17 Implementation Remaining Issues
 - Inclusion of NGAC boundaries correctly
 - Run time and CPU usage
 - NAM-X impact (positive so far, more optically dense clouds)
 - Smoke plume impact
 - Decreases with forecast time
 - Emission timing and ejection height uncertainties

Potential future emphasis

- Assimilation of satellite data (AOD, radiances..)
- Near real-time fire locations, strength, emissions
 - Top down (satellite) vs Bottom up (BlueSky) approaches
 - Improved plume rise algorithms
 - Canadian, Mexican & external source impacts

- Unification of AQ systems

- HYSPLIT smoke/dust \rightarrow NGAC Aerosol
- CMAQ ozone & total PM
- HRRR-smoke

USWRP ESRL/EPA FV3-CMAQ - Inline allows for High Resolution

- Temporal (Kalman Filter) bias correction
- Improved Evaluation
 - use of VIIRS/GOES-R..
 - Operational models for field experiments (ESRL FireX 2018, NASA FASMEE)